Skip to content

Ollama API Document 中文翻譯

Published: at 12:00 AM

icon

API base on ad22ace439eb3fab7230134e56bb6276a78347e4

Endpoints

EndpointMethodDescription
/api/generatePOST生成補全
/api/chatPOST生成聊天補全
/api/createPOST創建模型
/api/tagsGET列出本地模型
/api/showPOST顯示模型信息
/api/copyPOST複製模型
/api/deleteDELETE刪除模型
/api/pullPOST拉取模型
/api/pushPOST推送模型
/api/embedPOST生成嵌入
/api/psGET列出運行中的模型
/api/versionGET版本

約定

模型名稱

模型名稱遵循 model:tag 格式,其中 model 可以有一個可選的命名空間,例如 example/model。一些例子包括 orca-mini:3b-q4_1llama3:70b。標籤是可選的,如果未提供,將默認為 latest。標籤用於識別特定版本。

持續時間

所有持續時間均以納秒為單位返回。

stream 流式響應

某些端點以 JSON 對象的形式流式傳輸響應。可以通過為這些端點提供 {"stream": false} 來禁用流式傳輸。

生成補全

POST /api/generate

生成給定提示的響應,使用提供的模型。這是一個流式傳輸端點,因此會有一系列響應。最終的響應對象將包括請求的統計數據和其他數據。

參數

高級參數(可選):

結構化輸出

通過在 format 參數中提供 JSON schema 支援結構化輸出。模型將生成符合該 schema 的回應。請參見下方的結構化輸出範例。

JSON 模式

通過將 format 參數設置為 json 來啟用 JSON 模式。這將使回應結構化為有效的 JSON 物件。請參見下方的 JSON 模式範例

[!重要] 在 prompt 中指示模型使用 JSON 非常重要。否則,模型可能會生成大量空白字符。

範例

生成請求(流式傳輸)

請求
curl http://localhost:11434/api/generate -d '{
  "model": "llama3.2",
  "prompt": "為什麼天空是藍色的?"
}'
回應

返回一系列 JSON 物件:

{
  "model": "llama3.2",
  "created_at": "2023-08-04T08:52:19.385406455-07:00",
  "response": "因為",
  "done": false
}

流中的最終回應還包括有關生成的附加數據:

要計算回應生成的速度(以標記/秒為單位),可以使用 eval_count / eval_duration * 10^9

{
  "model": "llama3.2",
  "created_at": "2023-08-04T19:22:45.499127Z",
  "response": "",
  "done": true,
  "context": [1, 2, 3],
  "total_duration": 10706818083,
  "load_duration": 6338219291,
  "prompt_eval_count": 26,
  "prompt_eval_duration": 130079000,
  "eval_count": 259,
  "eval_duration": 4232710000
}

請求(無流式傳輸)

請求

當流式傳輸關閉時,可以在一個回應中接收回應。

curl http://localhost:11434/api/generate -d '{
  "model": "llama3.2",
  "prompt": "為什麼天空是藍色的?",
  "stream": false
}'
回應

如果 stream 設置為 false,回應將是一個 JSON 對象:

{
  "model": "llama3.2",
  "created_at": "2023-08-04T19:22:45.499127Z",
  "response": "天空是藍色的,因為它是天空的顏色。",
  "done": true,
  "context": [1, 2, 3],
  "total_duration": 5043500667,
  "load_duration": 5025959,
  "prompt_eval_count": 26,
  "prompt_eval_duration": 325953000,
  "eval_count": 290,
  "eval_duration": 4709213000
}

請求(帶有後綴)

請求
curl http://localhost:11434/api/generate -d '{
  "model": "codellama:code",
  "prompt": "def compute_gcd(a, b):",
  "suffix": "    return result",
  "options": {
    "temperature": 0
  },
  "stream": false
}'
回應
{
  "model": "codellama:code",
  "created_at": "2024-07-22T20:47:51.147561Z",
  "response": "\n  if a == 0:\n    return b\n  else:\n    return compute_gcd(b % a, a)\n\ndef compute_lcm(a, b):\n  result = (a * b) / compute_gcd(a, b)\n",
  "done": true,
  "done_reason": "stop",
  "context": [...],
  "total_duration": 1162761250,
  "load_duration": 6683708,
  "prompt_eval_count": 17,
  "prompt_eval_duration": 201222000,
  "eval_count": 63,
  "eval_duration": 953997000
}

請求(結構化輸出)

請求
curl -X POST http://localhost:11434/api/generate -H "Content-Type: application/json" -d '{
  "model": "llama3.1:8b",
  "prompt": "Ollama is 22 years old and is busy saving the world. Respond using JSON",
  "stream": false,
  "format": {
    "type": "object",
    "properties": {
      "age": {
        "type": "integer"
      },
      "available": {
        "type": "boolean"
      }
    },
    "required": [
      "age",
      "available"
    ]
  }
}'
回應
{
  "model": "llama3.1:8b",
  "created_at": "2024-12-06T00:48:09.983619Z",
  "response": "{\n  \"age\": 22,\n  \"available\": true\n}",
  "done": true,
  "done_reason": "stop",
  "context": [1, 2, 3],
  "total_duration": 1075509083,
  "load_duration": 567678166,
  "prompt_eval_count": 28,
  "prompt_eval_duration": 236000000,
  "eval_count": 16,
  "eval_duration": 269000000
}

請求(JSON 模式)

[!重要] 當 format 設置為 json 時,輸出將始終是格式良好的 JSON 對象。重要的是還要指示模型以 JSON 格式回應。

請求
curl http://localhost:11434/api/generate -d '{
  "model": "llama3.2",
  "prompt": "What color is the sky at different times of the day? Respond using JSON",
  "format": "json",
  "stream": false
}'
回應
{
  "model": "llama3.2",
  "created_at": "2023-11-09T21:07:55.186497Z",
  "response": "{\n\"morning\": {\n\"color\": \"blue\"\n},\n\"noon\": {\n\"color\": \"blue-gray\"\n},\n\"afternoon\": {\n\"color\": \"warm gray\"\n},\n\"evening\": {\n\"color\": \"orange\"\n}\n}\n",
  "done": true,
  "context": [1, 2, 3],
  "total_duration": 4648158584,
  "load_duration": 4071084,
  "prompt_eval_count": 36,
  "prompt_eval_duration": 439038000,
  "eval_count": 180,
  "eval_duration": 4196918000
}

response 的值將是一個包含類似 JSON 的字符串:

{
  "morning": {
    "color": "blue"
  },
  "noon": {
    "color": "blue-gray"
  },
  "afternoon": {
    "color": "warm gray"
  },
  "evening": {
    "color": "orange"
  }
}

請求(帶有圖像)

要向多模態模型(如 llavabakllava)提交圖像,請提供 base64 編碼的 images 列表:

請求
curl http://localhost:11434/api/generate -d '{
  "model": "llava",
  "prompt":"What is in this picture?",
  "stream": false,
  "images": ["iVBORw0KGgoAAA...(skipped)..."]
}'
回應
{
  "model": "llava",
  "created_at": "2023-11-03T15:36:02.583064Z",
  "response": "A happy cartoon character, which is cute and cheerful.",
  "done": true,
  "context": [1, 2, 3],
  "total_duration": 2938432250,
  "load_duration": 2559292,
  "prompt_eval_count": 1,
  "prompt_eval_duration": 2195557000,
  "eval_count": 44,
  "eval_duration": 736432000
}

請求(原始模式)

在某些情況下,您可能希望繞過模板系統並提供完整的提示。在這種情況下,您可以使用 raw 參數來禁用模板。還要注意,原始模式不會返回上下文。

請求
curl http://localhost:11434/api/generate -d '{
  "model": "mistral",
  "prompt": "[INST] why is the sky blue? [/INST]",
  "raw": true,
  "stream": false
}'

請求(可重現的輸出)

要獲得可重現的輸出,請將 seed 設置為一個數字:

請求
curl http://localhost:11434/api/generate -d '{
  "model": "mistral",
  "prompt": "為什麼天空是藍色的?",
  "options": {
    "seed": 123
  }
}'
回應
{
  "model": "mistral",
  "created_at": "2023-11-03T15:36:02.583064Z",
  "response": " 天空看起來是藍色的,因為一種叫做瑞利散射的現象。",
  "done": true,
  "total_duration": 8493852375,
  "load_duration": 6589624375,
  "prompt_eval_count": 14,
  "prompt_eval_duration": 119039000,
  "eval_count": 110,
  "eval_duration": 1779061000
}

生成請求(帶有選項)

如果您希望在運行時設置模型的自定義選項,而不是在 Modelfile 中設置,可以使用 options 參數。此範例設置了所有可用選項,但您可以單獨設置其中任何一個,並省略不想覆蓋的選項。

請求
curl http://localhost:11434/api/generate -d '{
  "model": "llama3.2",
  "prompt": "為什麼天空是藍色的?",
  "stream": false,
  "options": {
    "num_keep": 5,
    "seed": 42,
    "num_predict": 100,
    "top_k": 20,
    "top_p": 0.9,
    "min_p": 0.0,
    "typical_p": 0.7,
    "repeat_last_n": 33,
    "temperature": 0.8,
    "repeat_penalty": 1.2,
    "presence_penalty": 1.5,
    "frequency_penalty": 1.0,
    "mirostat": 1,
    "mirostat_tau": 0.8,
    "mirostat_eta": 0.6,
    "penalize_newline": true,
    "stop": ["\n", "user:"],
    "numa": false,
    "num_ctx": 1024,
    "num_batch": 2,
    "num_gpu": 1,
    "main_gpu": 0,
    "low_vram": false,
    "vocab_only": false,
    "use_mmap": true,
    "use_mlock": false,
    "num_thread": 8
  }
}'
回應
{
  "model": "llama3.2",
  "created_at": "2023-08-04T19:22:45.499127Z",
  "response": "天空是藍色的,因為它是天空的顏色。",
  "done": true,
  "context": [1, 2, 3],
  "total_duration": 4935886791,
  "load_duration": 534986708,
  "prompt_eval_count": 26,
  "prompt_eval_duration": 107345000,
  "eval_count": 237,
  "eval_duration": 4289432000
}

加載模型

如果提供了空提示,模型將被加載到內存中。

請求
curl http://localhost:11434/api/generate -d '{
  "model": "llama3.2"
}'
回應

返回一個 JSON 對象:

{
  "model": "llama3.2",
  "created_at": "2023-12-18T19:52:07.071755Z",
  "response": "",
  "done": true
}

卸載模型

如果提供了空提示且 keep_alive 參數設置為 0,則模型將從內存中卸載。

請求
curl http://localhost:11434/api/generate -d '{
  "model": "llama3.2",
  "keep_alive": 0
}'
回應

返回一個 JSON 對象:

{
  "model": "llama3.2",
  "created_at": "2024-09-12T03:54:03.516566Z",
  "response": "",
  "done": true,
  "done_reason": "unload"
}

生成聊天補全

POST /api/chat

使用提供的模型生成聊天中的下一條消息。這是一個流式傳輸端點,因此會有一系列響應。可以通過 "stream": false 禁用流式傳輸。最終的響應對象將包括請求的統計數據和其他數據。

參數

message 對象具有以下字段:

高級參數(可選):

結構化輸出

通過在 format 參數中提供 JSON schema 支援結構化輸出。模型將生成符合該 schema 的回應。請參見下方的結構化輸出範例。

範例

聊天請求(流式傳輸)

請求

發送一條聊天消息,並接收流式傳輸的回應。

curl http://localhost:11434/api/chat -d '{
  "model": "llama3.2",
  "messages": [
    {
      "role": "user",
      "content": "為什麼天空是藍色的?"
    }
  ]
}'
回應

返回一系列 JSON 對象:

{
  "model": "llama3.2",
  "created_at": "2023-08-04T08:52:19.385406455-07:00",
  "message": {
    "role": "assistant",
    "content": "天空",
    "images": null
  },
  "done": false
}

流中的最終回應:

{
  "model": "llama3.2",
  "created_at": "2023-08-04T19:22:45.499127Z",
  "done": true,
  "total_duration": 4883583458,
  "load_duration": 1334875,
  "prompt_eval_count": 26,
  "prompt_eval_duration": 342546000,
  "eval_count": 282,
  "eval_duration": 4535599000
}

聊天請求(無流式傳輸)

請求
curl http://localhost:11434/api/chat -d '{
  "model": "llama3.2",
  "messages": [
    {
      "role": "user",
      "content": "為什麼天空是藍色的?"
    }
  ],
  "stream": false
}'
回應
{
  "model": "llama3.2",
  "created_at": "2023-12-12T14:13:43.416799Z",
  "message": {
    "role": "assistant",
    "content": "你好!今天你怎麼樣?"
  },
  "done": true,
  "total_duration": 5191566416,
  "load_duration": 2154458,
  "prompt_eval_count": 26,
  "prompt_eval_duration": 383809000,
  "eval_count": 298,
  "eval_duration": 4799921000
}

聊天請求(結構化輸出)

請求
curl -X POST http://localhost:11434/api/chat -H "Content-Type: application/json" -d '{
  "model": "llama3.1",
  "messages": [{"role": "user", "content": "Ollama 22 歲,忙於拯救世界。返回一個包含年齡和可用性的 JSON 對象。"}],
  "stream": false,
  "format": {
    "type": "object",
    "properties": {
      "age": {
        "type": "integer"
      },
      "available": {
        "type": "boolean"
      }
    },
    "required": [
      "age",
      "available"
    ]
  },
  "options": {
    "temperature": 0
  }
}'
回應
{
  "model": "llama3.1",
  "created_at": "2024-12-06T00:46:58.265747Z",
  "message": {
    "role": "assistant",
    "content": "{\"age\": 22, \"available\": false}"
  },
  "done_reason": "stop",
  "done": true,
  "total_duration": 2254970291,
  "load_duration": 574751416,
  "prompt_eval_count": 34,
  "prompt_eval_duration": 1502000000,
  "eval_count": 12,
  "eval_duration": 175000000
}

聊天請求(帶有歷史記錄)

發送帶有對話歷史記錄的聊天消息。您可以使用相同的方法來啟動對話,使用多次提示或連鎖思維提示。

請求
curl http://localhost:11434/api/chat -d '{
  "model": "llama3.2",
  "messages": [
    {
      "role": "user",
      "content": "為什麼天空是藍色的?"
    },
    {
      "role": "assistant",
      "content": "由於瑞利散射。"
    },
    {
      "role": "user",
      "content": "這與米氏散射有何不同?"
    }
  ]
}'
回應

返回一系列 JSON 對象:

{
  "model": "llama3.2",
  "created_at": "2023-08-04T08:52:19.385406455-07:00",
  "message": {
    "role": "assistant",
    "content": "The"
  },
  "done": false
}

最終回應:

{
  "model": "llama3.2",
  "created_at": "2023-08-04T19:22:45.499127Z",
  "done": true,
  "total_duration": 8113331500,
  "load_duration": 6396458,
  "prompt_eval_count": 61,
  "prompt_eval_duration": 398801000,
  "eval_count": 468,
  "eval_duration": 7701267000
}

聊天請求(帶有圖像)

請求

發送帶有圖像的聊天消息。圖像應以數組形式提供,每個圖像均以 Base64 編碼。

curl http://localhost:11434/api/chat -d '{
  "model": "llava",
  "messages": [
    {
      "role": "user",
      "content": "這張圖片中有什麼?",
      "images": ["iVBORw0KGgoAAAANSUhEUgAAAG0AAABmCAYAAADBPx+VAAAA...(skipped)..."]
    }
  ]
}'
回應
{
  "model": "llava",
  "created_at": "2023-12-13T22:42:50.203334Z",
  "message": {
    "role": "assistant",
    "content": " 這張圖片中有一個可愛的小豬,表情有些生氣。它穿著一件帶有心形圖案的衣服,正在揮手。這似乎是一個繪畫或素描項目的一部分。",
    "images": null
  },
  "done": true,
  "total_duration": 1668506709,
  "load_duration": 1986209,
  "prompt_eval_count": 26,
  "prompt_eval_duration": 359682000,
  "eval_count": 83,
  "eval_duration": 1303285000
}

聊天請求(可重現的輸出)

請求
curl http://localhost:11434/api/chat -d '{
  "model": "llama3.2",
  "messages": [
    {
      "role": "user",
      "content": "Hello!"
    }
  ],
  "options": {
    "seed": 101,
    "temperature": 0
  }
}'
回應
{
  "model": "llama3.2",
  "created_at": "2023-12-12T14:13:43.416799Z",
  "message": {
    "role": "assistant",
    "content": "Hello! How are you today?"
  },
  "done": true,
  "total_duration": 5191566416,
  "load_duration": 2154458,
  "prompt_eval_count": 26,
  "prompt_eval_duration": 383809000,
  "eval_count": 298,
  "eval_duration": 4799921000
}

聊天請求(帶有工具)

請求
curl http://localhost:11434/api/chat -d '{
  "model": "llama3.2",
  "messages": [
    {
      "role": "user",
      "content": "What is the weather today in Paris?"
    }
  ],
  "stream": false,
  "tools": [
    {
      "type": "function",
      "function": {
        "name": "get_current_weather",
        "description": "Get the current weather for a location",
        "parameters": {
          "type": "object",
          "properties": {
            "location": {
              "type": "string",
              "description": "The location to get the weather for, e.g. San Francisco, CA"
            },
            "format": {
              "type": "string",
              "description": "The format to return the weather in, e.g. 'celsius' or 'fahrenheit'",
              "enum": ["celsius", "fahrenheit"]
            }
          },
          "required": ["location", "format"]
        }
      }
    }
  ]
}'
回應
{
  "model": "llama3.2",
  "created_at": "2024-07-22T20:33:28.123648Z",
  "message": {
    "role": "assistant",
    "content": "",
    "tool_calls": [
      {
        "function": {
          "name": "get_current_weather",
          "arguments": {
            "format": "celsius",
            "location": "Paris, FR"
          }
        }
      }
    ]
  },
  "done_reason": "stop",
  "done": true,
  "total_duration": 885095291,
  "load_duration": 3753500,
  "prompt_eval_count": 122,
  "prompt_eval_duration": 328493000,
  "eval_count": 33,
  "eval_duration": 552222000
}

加載模型

如果消息數組為空,模型將被加載到內存中。

請求
curl http://localhost:11434/api/chat -d '{
  "model": "llama3.2",
  "messages": []
}'
回應
{
  "model": "llama3.2",
  "created_at": "2024-09-12T21:17:29.110811Z",
  "message": {
    "role": "assistant",
    "content": ""
  },
  "done_reason": "load",
  "done": true
}

卸載模型

如果消息數組為空且 keep_alive 參數設置為 0,則模型將從內存中卸載。

請求
curl http://localhost:11434/api/chat -d '{
  "model": "llama3.2",
  "messages": [],
  "keep_alive": 0
}'
回應

返回一個 JSON 對象:

{
  "model": "llama3.2",
  "created_at": "2024-09-12T21:33:17.547535Z",
  "message": {
    "role": "assistant",
    "content": ""
  },
  "done_reason": "unload",
  "done": true
}

創建模型

POST /api/create

從以下來源創建模型:

如果您是從 safetensors 目錄或 GGUF 文件創建模型,您必須為每個文件創建一個 blob,然後在 files 字段中使用與每個 blob 關聯的文件名和 SHA256 摘要。

參數

量化類型

類型推薦
q2_K
q3_K_L
q3_K_M
q3_K_S
q4_0
q4_1
q4_K_M*
q4_K_S
q5_0
q5_1
q5_K_M
q5_K_S
q6_K
q8_0*

範例

創建新模型

從現有模型創建新模型。

請求
curl http://localhost:11434/api/create -d '{
  "model": "mario",
  "from": "llama3.2",
  "system": "You are Mario from Super Mario Bros."
}'
回應

返回一系列 JSON 對象:

{"status":"reading model metadata"}
{"status":"creating system layer"}
{"status":"using already created layer sha256:22f7f8ef5f4c791c1b03d7eb414399294764d7cc82c7e94aa81a1feb80a983a2"}
{"status":"using already created layer sha256:8c17c2ebb0ea011be9981cc3922db8ca8fa61e828c5d3f44cb6ae342bf80460b"}
{"status":"using already created layer sha256:7c23fb36d80141c4ab8cdbb61ee4790102ebd2bf7aeff414453177d4f2110e5d"}
{"status":"using already created layer sha256:2e0493f67d0c8c9c68a8aeacdf6a38a2151cb3c4c1d42accf296e19810527988"}
{"status":"using already created layer sha256:2759286baa875dc22de5394b4a925701b1896a7e3f8e53275c36f75a877a82c9"}
{"status":"writing layer sha256:df30045fe90f0d750db82a058109cecd6d4de9c90a3d75b19c09e5f64580bb42"}
{"status":"writing layer sha256:f18a68eb09bf925bb1b669490407c1b1251c5db98dc4d3d81f3088498ea55690"}
{"status":"writing manifest"}
{"status":"success"}

量化模型

量化非量化模型。

請求
curl http://localhost:11434/api/create -d '{
  "model": "llama3.1:quantized",
  "from": "llama3.1:8b-instruct-fp16",
  "quantize": "q4_K_M"
}'
回應

返回一系列 JSON 對象:

{"status":"quantizing F16 model to Q4_K_M"}
{"status":"creating new layer sha256:667b0c1932bc6ffc593ed1d03f895bf2dc8dc6df21db3042284a6f4416b06a29"}
{"status":"using existing layer sha256:11ce4ee3e170f6adebac9a991c22e22ab3f8530e154ee669954c4bc73061c258"}
{"status":"using existing layer sha256:0ba8f0e314b4264dfd19df045cde9d4c394a52474bf92ed6a3de22a4ca31a177"}
{"status":"using existing layer sha256:56bb8bd477a519ffa694fc449c2413c6f0e1d3b1c88fa7e3c9d88d3ae49d4dcb"}
{"status":"creating new layer sha256:455f34728c9b5dd3376378bfb809ee166c145b0b4c1f1a6feca069055066ef9a"}
{"status":"writing manifest"}
{"status":"success"}

從 GGUF 創建模型

從 GGUF 文件創建模型。files 參數應包含您希望使用的 GGUF 文件的文件名和 SHA256 摘要。在調用此 API 之前,請使用 /api/blobs/:digest 將 GGUF 文件推送到服務器。

請求
curl http://localhost:11434/api/create -d '{
  "model": "my-gguf-model",
  "files": {
    "test.gguf": "sha256:432f310a77f4650a88d0fd59ecdd7cebed8d684bafea53cbff0473542964f0c3"
  }
}'
回應

返回一系列 JSON 對象:

{"status":"parsing GGUF"}
{"status":"using existing layer sha256:432f310a77f4650a88d0fd59ecdd7cebed8d684bafea53cbff0473542964f0c3"}
{"status":"writing manifest"}
{"status":"success"}

從 Safetensors 目錄創建模型

files 參數應包括 safetensors 模型的文件字典,其中包括每個文件的文件名和 SHA256 摘要。在調用此 API 之前,請使用 /api/blobs/:digest 將每個文件推送到服務器。文件將保留在緩存中,直到 Ollama 服務器重新啟動。

請求
curl http://localhost:11434/api/create -d '{
  "model": "fred",
  "files": {
    "config.json": "sha256:dd3443e529fb2290423a0c65c2d633e67b419d273f170259e27297219828e389",
    "generation_config.json": "sha256:88effbb63300dbbc7390143fbbdd9d9fa50587b37e8bfd16c8c90d4970a74a36",
    "special_tokens_map.json": "sha256:b7455f0e8f00539108837bfa586c4fbf424e31f8717819a6798be74bef813d05",
    "tokenizer.json": "sha256:bbc1904d35169c542dffbe1f7589a5994ec7426d9e5b609d07bab876f32e97ab",
    "tokenizer_config.json": "sha256:24e8a6dc2547164b7002e3125f10b415105644fcf02bf9ad8b674c87b1eaaed6",
    "model.safetensors": "sha256:1ff795ff6a07e6a68085d206fb84417da2f083f68391c2843cd2b8ac6df8538f"
  }
}'
回應

返回一系列 JSON 對象:

{"status":"converting model"}
{"status":"creating new layer sha256:05ca5b813af4a53d2c2922933936e398958855c44ee534858fcfd830940618b6"}
{"status":"using autodetected template llama3-instruct"}
{"status":"using existing layer sha256:56bb8bd477a519ffa694fc449c2413c6f0e1d3b1c88fa7e3c9d88d3ae49d4dcb"}
{"status":"writing manifest"}
{"status":"success"}

檢查 Blob 是否存在

HEAD /api/blobs/:digest

確保用於創建模型的文件 blob(大型二進制對象)存在於服務器上。這會檢查您的 Ollama 服務器,而不是 ollama.com。

查詢參數

範例

請求

curl -I http://localhost:11434/api/blobs/sha256:29fdb92e57cf0827ded04ae6461b5931d01fa595843f55d36f5b275a52087dd2

回應

如果 blob 存在,返回 200 OK;如果不存在,返回 404 Not Found。

推送 Blob

POST /api/blobs/:digest

將文件推送到 Ollama 服務器以創建 “blob”(大型二進制對象)。

查詢參數

範例

請求

curl -T model.gguf -X POST http://localhost:11434/api/blobs/sha256:29fdb92e57cf0827ded04ae6461b5931d01fa595843f55d36f5b275a52087dd2

回應

如果 blob 成功創建,返回 201 Created;如果摘要不符合預期,返回 400 Bad Request。

列出本地模型

GET /api/tags

列出本地可用的模型。

範例

請求

curl http://localhost:11434/api/tags

回應

返回一個 JSON 對象。

{
  "models": [
    {
      "name": "codellama:13b",
      "modified_at": "2023-11-04T14:56:49.277302595-07:00",
      "size": 7365960935,
      "digest": "9f438cb9cd581fc025612d27f7c1a6669ff83a8bb0ed86c94fcf4c5440555697",
      "details": {
        "format": "gguf",
        "family": "llama",
        "families": null,
        "parameter_size": "13B",
        "quantization_level": "Q4_0"
      }
    },
    {
      "name": "llama3:latest",
      "modified_at": "2023-12-07T09:32:18.757212583-08:00",
      "size": 3825819519,
      "digest": "fe938a131f40e6f6d40083c9f0f430a515233eb2edaa6d72eb85c50d64f2300e",
      "details": {
        "format": "gguf",
        "family": "llama",
        "families": null,
        "parameter_size": "7B",
        "quantization_level": "Q4_0"
      }
    }
  ]
}

顯示模型信息

POST /api/show

顯示模型的詳細信息,包括詳細資料、模型文件、模板、參數、許可證、系統提示。

參數

範例

請求

curl http://localhost:11434/api/show -d '{
  "model": "llama3.2"
}'

回應

{
  "modelfile": "# Modelfile generated by \"ollama show\"\n# To build a new Modelfile based on this one, replace the FROM line with:\n# FROM llava:latest\n\nFROM /Users/matt/.ollama/models/blobs/sha256:200765e1283640ffbd013184bf496e261032fa75b99498a9613be4e94d63ad52\nTEMPLATE \"\"\"{{ .System }}\nUSER: {{ .Prompt }}\nASSISTANT: \"\"\"\nPARAMETER num_ctx 4096\nPARAMETER stop \"\u003c/s\u003e\"\nPARAMETER stop \"USER:\"\nPARAMETER stop \"ASSISTANT:\"",
  "parameters": "num_keep                       24\nstop                           \"<|start_header_id|>\"\nstop                           \"<|end_header_id|>\"\nstop                           \"<|eot_id|>\"",
  "template": "{{ if .System }}<|start_header_id|>system<|end_header_id|>\n\n{{ .System }}<|eot_id|>{{ end }}{{ if .Prompt }}<|start_header_id|>user<|end_header_id|>\n\n{{ .Prompt }}<|eot_id|>{{ end }}<|start_header_id|>assistant<|end_header_id|>\n\n{{ .Response }}<|eot_id|>",
  "details": {
    "parent_model": "",
    "format": "gguf",
    "family": "llama",
    "families": ["llama"],
    "parameter_size": "8.0B",
    "quantization_level": "Q4_0"
  },
  "model_info": {
    "general.architecture": "llama",
    "general.file_type": 2,
    "general.parameter_count": 8030261248,
    "general.quantization_version": 2,
    "llama.attention.head_count": 32,
    "llama.attention.head_count_kv": 8,
    "llama.attention.layer_norm_rms_epsilon": 0.00001,
    "llama.block_count": 32,
    "llama.context_length": 8192,
    "llama.embedding_length": 4096,
    "llama.feed_forward_length": 14336,
    "llama.rope.dimension_count": 128,
    "llama.rope.freq_base": 500000,
    "llama.vocab_size": 128256,
    "tokenizer.ggml.bos_token_id": 128000,
    "tokenizer.ggml.eos_token_id": 128009,
    "tokenizer.ggml.merges": [], // 如果 `verbose=true`,將填充
    "tokenizer.ggml.model": "gpt2",
    "tokenizer.ggml.pre": "llama-bpe",
    "tokenizer.ggml.token_type": [], // 如果 `verbose=true`,將填充
    "tokenizer.ggml.tokens": [] // 如果 `verbose=true`,將填充
  }
}

複製模型

POST /api/copy

複製模型。從現有模型創建一個新名稱的模型。

範例

請求

curl http://localhost:11434/api/copy -d '{
  "source": "llama3.2",
  "destination": "llama3-backup"
}'

回應

如果成功,返回 200 OK;如果源模型不存在,返回 404 Not Found。

刪除模型

DELETE /api/delete

刪除模型及其數據。

參數

範例

請求

curl -X DELETE http://localhost:11434/api/delete -d '{
  "model": "llama3:13b"
}'

回應

如果成功,返回 200 OK;如果要刪除的模型不存在,返回 404 Not Found。

拉取模型

POST /api/pull

從 ollama 庫下載模型。取消的拉取操作將從中斷處繼續,多次調用將共享相同的下載進度。

參數

範例

請求

curl http://localhost:11434/api/pull -d '{
  "model": "llama3.2"
}'

回應

如果未指定 stream 或設置為 true,將返回一系列 JSON 對象:

第一個對象是清單:

{
  "status": "pulling manifest"
}

然後是一系列下載響應。在任何下載完成之前,可能不會包含 completed 鍵。要下載的文件數量取決於清單中指定的層數。

{
  "status": "downloading digestname",
  "digest": "digestname",
  "total": 2142590208,
  "completed": 241970
}

所有文件下載完成後,最終的響應是:

{
    "status": "verifying sha256 digest"
}
{
    "status": "writing manifest"
}
{
    "status": "removing any unused layers"
}
{
    "status": "success"
}

如果 stream 設置為 false,則響應是一個單一的 JSON 對象:

{
  "status": "success"
}

推送模型

POST /api/push

將模型上傳到模型庫。需要先註冊 ollama.ai 並添加公鑰。

參數

範例

請求

curl http://localhost:11434/api/push -d '{
  "model": "mattw/pygmalion:latest"
}'

回應

如果未指定 stream 或設置為 true,將返回一系列 JSON 對象:

{ "status": "retrieving manifest" }

然後:

{
  "status": "starting upload",
  "digest": "sha256:bc07c81de745696fdf5afca05e065818a8149fb0c77266fb584d9b2cba3711ab",
  "total": 1928429856
}

接著是一系列上傳響應:

{
  "status": "starting upload",
  "digest": "sha256:bc07c81de745696fdf5afca05e065818a8149fb0c77266fb584d9b2cba3711ab",
  "total": 1928429856
}

最後,當上傳完成時:

{"status":"pushing manifest"}
{"status":"success"}

如果 stream 設置為 false,則響應是一個單一的 JSON 對象:

{ "status": "success" }

生成嵌入

POST /api/embed

從模型生成嵌入

參數

高級參數:

範例

請求

curl http://localhost:11434/api/embed -d '{
  "model": "all-minilm",
  "input": "Why is the sky blue?"
}'

回應

{
  "model": "all-minilm",
  "embeddings": [
    [
      0.010071029, -0.0017594862, 0.05007221, 0.04692972, 0.054916814,
      0.008599704, 0.105441414, -0.025878139, 0.12958129, 0.031952348
    ]
  ],
  "total_duration": 14143917,
  "load_duration": 1019500,
  "prompt_eval_count": 8
}

請求(多個輸入)

curl http://localhost:11434/api/embed -d '{
  "model": "all-minilm",
  "input": ["Why is the sky blue?", "Why is the grass green?"]
}'

回應

{
  "model": "all-minilm",
  "embeddings": [
    [
      0.010071029, -0.0017594862, 0.05007221, 0.04692972, 0.054916814,
      0.008599704, 0.105441414, -0.025878139, 0.12958129, 0.031952348
    ],
    [
      -0.0098027075, 0.06042469, 0.025257962, -0.006364387, 0.07272725,
      0.017194884, 0.09032035, -0.051705178, 0.09951512, 0.09072481
    ]
  ]
}

列出運行中的模型

GET /api/ps

列出當前加載到內存中的模型。

範例

請求

curl http://localhost:11434/api/ps

回應

返回一個 JSON 對象。

{
  "models": [
    {
      "name": "mistral:latest",
      "model": "mistral:latest",
      "size": 5137025024,
      "digest": "2ae6f6dd7a3dd734790bbbf58b8909a606e0e7e97e94b7604e0aa7ae4490e6d8",
      "details": {
        "parent_model": "",
        "format": "gguf",
        "family": "llama",
        "families": ["llama"],
        "parameter_size": "7.2B",
        "quantization_level": "Q4_0"
      },
      "expires_at": "2024-06-04T14:38:31.83753-07:00",
      "size_vram": 5137025024
    }
  ]
}

生成嵌入

注意:此端點已被 /api/embed 取代

POST /api/embeddings

從模型生成嵌入

參數

高級參數:

範例

請求

curl http://localhost:11434/api/embeddings -d '{
  "model": "all-minilm",
  "prompt": "這是一篇關於ollama的文章..."
}'

回應

{
  "embedding": [
    0.5670403838157654, 0.009260174818336964, 0.23178744316101074,
    -0.2916173040866852, -0.8924556970596313, 0.8785552978515625,
    -0.34576427936553955, 0.5742510557174683, -0.04222835972905159,
    -0.137906014919281
  ]
}

版本

GET /api/version

檢索 Ollama 版本

範例

請求

curl http://localhost:11434/api/version

回應

{
  "version": "0.5.1"
}

Previous Post
Ollama(01)
Next Post
RabbitMQ(1)